Inverted human umbilical arteries with tunable wall thicknesses for nerve regeneration.

نویسندگان

  • Thomas Crouzier
  • Trosper McClendon
  • Zehra Tosun
  • Peter S McFetridge
چکیده

Tubular nerve guides have shown a potential to bridge nerve defects, by directing neuronal elongation, localizing growth factors, and inhibiting fibrotic cellular ingrowth. These investigations describe a novel acellular scaffold derived from the human umbilical cord artery that aims to enhance nerve regeneration by presenting a unique mechanical and chemical environment to the damaged nerve ends. A rapid, semiautomated dissection technique is described that isolates the human umbilical artery (HUA) from the umbilical cord, after which the vessel is decellularized using sodium dodecyl sulfate (SDS). The artery is turned inside out to produce a 3D scaffold, that unlike previous vessels for nerve repair, is more resistant to collapse. The scaffold has the potential as either an acellular bridge-implant, or for in vitro nerve regeneration. Stress-strain relationships and suture retention were assessed to determine whether the material had similar mechanical properties to native nerves. A dual process-flow perfusion bioreactor was developed to assess glucose mass transfer, and to investigate the culture of neuronal-like PC12 cells within the scaffold. These investigations have shown the automated dissecting method yields a smooth tubular scaffold, where wall thickness can be tuned to alter the mechanical behavior of the scaffold. Inverting the scaffold prevents collapse, with the decellularized iHUA having comparable mechanical properties to native nerves. Bioreactor cultures with PC12 cells seeded within iHUA lumenal void were shown to adhere and migrate into the preexisting ECM after 11 days of culture. These investigations show the potential of the iHUA as a unique 3D scaffold that may enhance nerve regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosis

Background Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal ...

متن کامل

Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration.

Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) that are available from cell banks can be induced to differentiate into various cell types, thereby making them practical potential sources for cell-based therapies. In injured peripheral nerves, Schwann cells (SCs) contribute to functional recovery by supporting axonal regeneration and myelin reconstruction. Here, we first demons...

متن کامل

Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve.

OBJECTIVE Bone marrow and umbilical cord stromal cells are multipotential stem cells that have the ability to produce growth factors that play an important role in survival and generation of axons. The goal of this study was to evaluate the effects of the two different mesenchymal stem cells on peripheral nerve regeneration. MATERIALS AND METHODS In this experimental study, a 10 mm segment of...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration

The extracellular matrix, which includes collagens, laminin, or fibronectin, plays an important role in peripheral nerve regeneration. Recently, a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche. However, extensive clinical use of Schwann cells remains limited because of the limited origin, loss of an autologous nerve, and extended in vitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2009